

Enantioselective All-Carbon (4+2) Annulation by *N*-Heterocyclic Carbene Catalysis

Lisa Candish,[†] Alison Levens,[†] and David W. Lupton*

School of Chemistry, Monash University, Clayton 3800, Victoria, Australia

Supporting Information

ABSTRACT: The enantioselective vinylogous Michael/ aldol cascade is an underdeveloped approach to cyclohexenes. Herein we describe a highly enantioselective (most \geq 98:2 er) and diastereoselective (all \geq 15:1 dr) *N*heterocyclic carbene catalyzed cycloisomerization of acyclic dienyl esters to cyclohexyl β -lactones. Derivatizations avail cyclohexenes bearing four contiguous stereogenic centers, while mechanistic studies support olefin isomerization prior to cyclization.

vclohexenes are valuable motifs in medicinal and natural products chemistry, with their synthesis generally invoking application of the Diels-Alder reaction.¹ As a consequence of this pre-eminence, numerous catalytic enantioselective Diels-Alder reactions have been developed.^{1c} In contrast, the enantioselective catalysis of stepwise all-carbon (4+2) annulations has received only modest attention.² For example, stepwise annulation of simple dienolates (i.e., 1) with Michael acceptors (i.e., 2) to afford cyclohexenes (i.e., 3; eq 1 in Figure 1), despite introducing new opportunities for catalysis and target focused synthesis, is yet to be achieved via enantioselective catalysis. Presumably this deficiency is due to challenges in controlling chemoselectivity with tris-nucleophiles (1) and bis-electrophiles (2), reagents that in principle can provide intermediates II-V (and more), and hence various byproducts (Figure 1).³ Herein we report studies on this topic that have revealed an enantioselective cycloisomerization of dienyl esters 4 to cyclohexenyl β -lactones⁴ (eq 2 in Figure 1). This reaction complements existing (4+2) annulations, providing products inaccessible via the Diels-Alder reaction, while expanding the underdeveloped field of N-heterocyclic carbene (NHC) catalysis⁵ with ester substrates.^{6–8}

In earlier studies from our group, an NHC-catalyzed vinylogous Michael/aldol cascade to afford cyclohexadienes (i.e., **6**) was discovered (eq 3 in Figure 1).^{9,10} Unfortunately, chemoselectivity was poorly controlled;³ thus, the reaction terminated with stereoablative decarboxylation, had limited scope, and could not be catalyzed with homochiral NHCs. To address these limitations, we conceived an approach that takes advantage of the Curtin–Hammett principle to concurrently address chemoselectivity and enantioselectivity, the latter by either conventional transition-state control^{11b} or thermodynamic models.^{11c} Specifically, it was postulated that the vinylogous carbonic anhydride motif in 4, with an appropriate NHC,¹² should provide the well-studied α,β -unsaturated acyl azolium **VI**¹³ and the novel dienolate **VII**. The azolium **VI** is

known to favor conjugate processes, while the moderate nucleophilicity of dienolate **VII** allows reversible reactivity, potentially permitting reaction discovery in the presence of poorly chemo- or stereoselective processes.¹¹

To reduce these ideas to practice, studies commenced with ester 4a. When it was exposed to 10 mol% IMes (A), β -lactone 7a formed, implicating a transformation consistent with the intended design (eq 2), although pyranone 8a was the major product (Table 1, entry 1). Presumably 7a forms, rather than the isomeric β -lactone 5 (R¹ = Ph, R² = H), due to isomerization of the olefin into conjugation with the ester (*vide infra*). To suppress pyranone formation and favor β lactone 7, methyl dienyl ester 4b was examined, providing β lactone 7b in 85% yield and with high diastereoselectivity (Table 1, entry 2). Changing to chiral NHCs B, C, or D1

Received: August 20, 2014 Published: September 24, 2014

Table 1. Optimization of the Cycloisomerization of 4a,b

EtO_2C Ph $tomological transformation to the solution that the solution that the solution t$											
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$											
entry	cat. ^a	4	solvent/temp/time	yield ^{b} (%)	dr^c	er^d					
1	A	a	$\begin{array}{c} THF/0 \rightarrow 18 \ ^{\circ}C/\\ 2 \ h \end{array}$	(47^e)							
2	Α	ь	THF/rt/2 h	85	11:1	_					
3	В	ь	THF/rt/60 h	41	>20:1	59:41					
4	С	b	THF/rt/20 h	15	>20:1	-75:25					
5	D1	b	THF/rt/38 h	40	>20:1	89:11					
6	D2	b	THF/rt/20 h	79	>20:1	65:35					
7	D3	b	THF/rt/20 h	16	>20:1	89:11					
8	D4	b	THF/66 °C/20 h	31	>20:1	97:3					
9	D4	b	$\rm C_6H_6/80~^\circ C/20~h$	37	>20:1	96:4					
10	D4 ^f	b	THF/66 °C/20 h	-							
11	D4 ^g	b	THF/66 °C/20 h	-							
12	D4	b	THF/100 °C/20 h	51	>20:1	98:2					
13	$\mathbf{D4}^{h}$	b	THF/66 °C/14 h	$71 \ (89^i)$	>20:1	98:2					

^{*a*}Catalysts generated with KHMDS except as noted. ^{*b*}Isolated yield. ^{*c*}Diastereomeric ratio by ¹H NMR spectroscopic analysis. ^{*d*}Enantiomeric ratio by HPLC over chiral stationary phases. ^{*c*}Yield of 8a. ^{*f*}D4 generated using LiHMDS. ^{*g*}D4 generated using NaHMDS. ^{*h*}20 mol% D4. ^{*i*}Yield based on recovered starting material.

provided moderately enantioenriched β -lactone 7b¹⁴ (Table 1, entries 3–5), with optimal selectivity obtained with **D1** (89:11 er, Table 1, entry 5). To enhance the enantioselectivity, modification of the *N*-substituent was examined,¹⁵ and while *N*-Mes **D2** and *N*-*p*-CH₃OC₆H₄ **D3** failed to improve the outcome (Table 1, entries 6 and 7), *tert*-butyl **D4** provided 7b in 97:3 er and greater than 20:1 dr (Table 1, entry 8). The reaction was comparable in benzene (Table 1, entry 9); however, it failed when the carbene was generated with NaHMDS or LiHMDS (Table 1, entries 10 and 11).¹⁶ Performing the reaction in a sealed tube at 100 °C increased the yield (Table 1, entry 12), as did increasing catalyst loading, providing 7b in 98:2 er, >20:1 dr, and 71% yield (Table 1, entry 13), defining conditions for subsequent studies.

To examine the generality of the reaction, a range of dienyl cinnamates (4b-g) were prepared. Electron-donating *ortho* or *para* substituents (Table 2, entries 2–4), and electronwithdrawing *para* substituents (Table 2, entry 5), were all tolerated, giving the expected products 7c-f with excellent enantioselectivity (98:2 \rightarrow 99:1 er). However, *ortho* bromide 4g reacted with decreased enantioselectivity, 92:8 er (Table 2, entry 6). Substrates bearing an aliphatic R¹ substituent, i.e. 4h, reacted smoothly with IMes (A) (Table 2, entry 7) but were unreactive toward the D4 catalyst. Modification of the dienol portion commenced with ethyl dienes 4i and j, giving the β -lactones in 92% and 83% yield, respectively, and identical stereoselectivity (>20:1 dr, 98:2 er) (Table 2, entries 8 and 9). The reaction with isopropyl dienes 4k and 1 proceeded in acceptable yield but with decreased diastereoselectivity (17:1

R³O₂C、	R ¹ 0 R ² 4b-q	20 	mol% D4 66 °C, 14	i h	R ³ O₂C	R ¹ 0 0 R ² 7b-q	(5) I				
entry	\mathbb{R}^1	R ²	R ³	4/7	yield ^a (%)	dr ^b	er ^c				
1	Ph	CH_3	Et	b	71	>20:1	98:2				
2	p-CH ₃ C ₆ H ₄	CH ₃	Et	c	67	19:1	98:2				
3	p-CH ₃ OC ₆ H ₄	CH ₃	Et	d	54	>20:1	98:2				
4	o-CH ₃ OC ₆ H ₄	CH_3	Et	e	60	>20:1	99:1				
5	p-BrC ₆ H ₄	CH_3	Et	f	54	>20:1	99:1				
6	o-BrC ₆ H ₄	CH_3	Et	g	51	>20:1	92:8				
7^d	$(CH_2)_4CH_3$	CH_3	Et	h	71	>20:1					
8	Ph	Et	Et	i	92	>20:1	98:2				
9	p-CH ₃ C ₆ H ₄	Et	Et	j	83	>20:1	98:2				
10^e	Ph	<i>i</i> -Pr	Et	k	66	17:1	92:8				
11^e	p-CH ₃ C ₆ H ₄	<i>i</i> -Pr	Et	1	58	15:1	93:7				
12	Ph	Bn	Et	m	88	>20:1	98:2				
13	p-CH ₃ C ₆ H ₄	Bn	Et	n	72	>20:1	99:1				
14	Ph	CH_3	CH_3	0	71	>20:1	99:1				
15	p-CH ₃ C ₆ H ₄	CH_3	CH_3	р	69	19:1	97:3				
16	Ph	CH_3	<i>i</i> -Pr	q	69	>20:1	98:2				
^{<i>a</i>} Isolated yield. ^{<i>b</i>} Diastereomeric ratio by ¹ H NMR spectroscopic											
entry 1 2 3 4 5 6 7 ^d 8 9 10 ^e 11 ^e 12 13 14 15 16 ^a Isolat analysi	R^1 Ph p -CH ₃ C ₆ H ₄ p -CH ₃ OC ₆ H ₄ o -CH ₃ OC ₆ H ₄ o -BrC ₆ H ₄ o -BrC ₆ H ₄ $(CH_2)_4CH_3$ Ph p -CH ₃ C ₆ H ₄ Ph	R ² CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ Et Et <i>i</i> -Pr <i>i</i> -Pr Bn Bn CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	R ³ Et Et Et Et Et Et Et Et Et Et Et Et Et	4/7 b c d e f g h i j k l m n o p q o byy C ove	(%) 71 67 54 60 54 51 71 92 83 66 58 88 72 71 69 69 ¹ H NM r chiral si	dr^{b} >20:1 19:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1 17:1 15:1 >20:1 >20:1 >20:1 >20:1 >20:1 Point Sector Action are set of the sector o	er ^c 98:2 98:2 99:1 99:1 92:8 98:2 98:2 98:2 98:2 92:8 93:7 98:2 99:1 99:1 97:3 98:2 99:1 97:3 98:2				

^dPerformed with IMes (A). ^eSubstrates 4k,l (~1:1) of enol diastereomers. and 15:1) and enantioselectivity (92:8 and 93:7 er), a result potentially related to the use of diastereomerically impure substrates (Table 2, entries 10 and 11). In contrast, benzylsubstituted dienes 4m and n both gave the expected products in good yield, diastereoselectivity (>20:1 dr), and enantio-

selectivity (98:2 and 99:1 er) (Table 2, entries 12 and 13). Unfortunately, when R^2 was a phenyl group the reaction failed, with starting materials recovered. Finally, the ethyl ester (R^3) could be replaced with either a methyl (**4o** and **p**) or isopropyl (**4q**) ester without adversely affecting the reaction outcome (Table 2, entries 14–16).

Insight into the reaction mechanism was initially derived from investigation of the fragmentation of the dienvl esters. Thus, the crossover of 4b and p was conducted (eq 6 in Figure 2). While crossed products were observed, the uncrossed products dominated (7b + p:c + o, 11:5), a result consistent with fragmentation to ion-paired acyl azolium (i.e., VI) and dienolate (i.e., VII). To examine the olefin isomerization, deuterium-labeled substrates 2D-4b and α D-4b were prepared. When 2D-4b was subjected to the reaction conditions, 2D-7b formed with excellent stereoselectivity but significantly reduced yield (cf. 4b) (eq 7 in Figure 2). Furthermore, deuterium was identified at C5, as expected with olefin isomerization following cyclization, and also at C1. When α D-4b was subjected to the reaction conditions, outcomes similar to those observed with the undeuterated variant (Table 2, entry 1) were obtained, although again with deuteration at C1 and C5 (eq 8 in Figure 2). To demonstrate that the deuteration pattern does not arise following β -lactone formation, α D-7b was resubjected to the reaction conditions and isolated unchanged. These results are consistent with olefin isomerization prior to β -lactonization. From these studies, a mechanism for the (4+2) annulation can be proposed (Figure 2). Initial addition of the NHC to carbonic anhydride 4b gives acyl azolium VI and enolate s-cis-

Figure 2. Mechanistic studies.

VII. Vinylogous Michael addition provides acyl azolium enolate VIII, which undergoes proton transfer, via IX, to afford X. β -Lactonization,¹⁷ via a pseudo-concerted aldol/ β -lactonization (transition state XI)^{9b} or the spirocyclic pathway proposed by Scheidt and Cheong,¹⁸ affords, following loss of D4, β -lactone 7b. While the vinylogous Michael reaction of the s-*trans* conformer of VII is potentially viable, both the likely reversibility of the reaction and the olefin isomerization sequence provide opportunities to converge upon intermediate X and hence provide common product 7b.

Finally, to examine the utility of the cyclohexyl β -lactones 7, chemoselective derivatization using one-pot, two-step procedures was examined (Scheme 1). It was possible to reductively ring-open the β -lactone using LiAlH₄ at low temperature to afford diol **9b** in 61% yield, >20:1 dr, and 98:2 er, while treatment of β -lactone 7**b** with ethanol and DBU provided diester **10b** with similar yield and identical stereoselectivity.

In this communication, we report the enantioselective cycloisomerization of dienyl cinnamates to enantioenriched

Communication

cyclohexenes. These products are inaccessible via Diels-Alder reactions, which would require 2H-oxet-2-one as the dienophile, a structure proposed in computational studies. Further examination of the utility of this reaction, and methods to expand the generality and catalyst activity, are topics of ongoing investigation.

ASSOCIATED CONTENT

Supporting Information

Characterization data, ¹H, and ¹³C NMR spectra, and detailed experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

david.lupton@monash.edu Author Contributions [†]L.C. and A.L. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge financial support from the Australian Research Council through the Discovery (DP120101315) and Future Fellowship programs (FT110100319).

REFERENCES

(1) For reviews on Diels-Alder reactions in total synthesis, see: (a) Juhl, M.; Tanner, D. Chem. Soc. Rev. 2009, 38, 2983. (b) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668. For enantioselective catalytic Diels-Alder reactions, see: (c) Du, H.; Ding, K. Handbook of Cyclization Reactions, Vol. 1; Wiley: Weinheim, 2010.

(2) For reviews covering stoichiometric stepwise cycloadditions, see: (a) Gompper, R. Angew. Chem., Int. Ed. Engl. 1969, 8, 312. (b) Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1973, 12, 212. For related dienamine approaches leading to cyclohexadienes, see: (c) Hong, B.-C.; Wu, M.-F.; Tseng, H.-C.; Liao, J.-H. Org. Lett. 2006, 8, 2217. (d) de Figueiredo, R. M.; Fröhlich, R.; Christmann, M. Angew. Chem., Int. Ed. 2008, 47, 1450. For a useful review, see: (e) Jiang, H.; Albrecht, L.; Jørgensen, K. A. Chem. Sci. 2013, 4, 2287. For computational studies into stepwise Diels–Alder reaction, see: (f) Linder, M.; Brinck, T. J. Org. Chem. 2012, 77, 6563 and references therein.

(3) For a review discussing the challenges of vinylogous reactivity, see: Schneider, C.; Abels, F. Org. Biomol. Chem. **2014**, *12*, 3531.

(4) For an alternate NHC-catalyzed approach to the cyclohexyl β lactone motif, see: Bera, S.; Samanta, R. C.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. **2014**, 53, 9622.

(5) For a selection of reviews on NHC catalysis, see: (a) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature **2014**, *510*, 485.

Journal of the American Chemical Society

(b) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606. For homoenolate chemistry, see: (c) Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336. For acyl azolium enolates, see: (d) Vora, H. U.; Wheeler, P.; Rovis, T. Adv. Synth. Catal. 2012, 354, 1617. (e) Douglas, J.; Churchill, G.; Smith, A. D. Synthesis 2012, 44, 2295. (f) Mahatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47, 696. For cascade catalysis, see: (g) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314. For acyl anion chemistry, see: (h) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511. For applications in total synthesis, see: (i) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 11686. For acyl anion-free catalysis, see: (j) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906. From activated esters, see: (k) Morrill, L. C.; Smith, A. D. Chem. Soc. Rev. 2014, 43, 6214.

(6) For enol ester derivatives, see: (a) Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2009, 131, 14176. (b) Candish, L.; Lupton, D. W. Org. Lett. 2010, 12, 4836. (c) Candish, L.; Lupton, D. W. Org. Biomol. Chem. 2011, 9, 8182. (d) Candish, L.; Lupton, D. W. Chem. Sci. 2012, 3, 380. (e) Kowalczyk, M.; Lupton, D. W. Angew. Chem., Int. Ed. 2014, 53, 5314.

(7) For electron-poor aryl esters, see: (a) Hao, L.; Du, Y.; Lv, H.; Chen, X.; Jiang, H.; Shao, Y.; Chi, Y. R. Org. Lett. 2012, 14, 2154.
(b) Hao, L.; Chen, S.; Xu, J.; Tiwari, B.; Fu, Z.; Li, T.; Lim, J.; Chi, Y. R. Org. Lett. 2013, 15, 4956. (c) Chen, S.; Hao, L.; Zhang, Y.; Tiwari, B.; Chi, Y. R. Org. Lett. 2013, 15, 5822. (d) Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835. (e) Xu, J.; Jin, Z.; Chi, Y. R. Org. Lett. 2013, 15, 5028.

(8) For anhydrides, see: (a) Lee, A.; Younai, A.; Price, C. K.; Izquierdo, J.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136, 10589. (b) Chen, X.-Y.; Gao, Z.-H.; Song, C.-Y.; Zhang, C.-L.; Wang, Z.-X.; Ye, S. Angew. Chem., Int. Ed. 2014, DOI: 10.1002/anie.201407469.

(9) (a) Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2011, 133, 4694. (b) Ryan, S. J.; Stasch, A.; Paddon-Row, M. N.; Lupton, D. W. J. Org. Chem. 2012, 77, 1113.

(10) For related reactions in which nucleophilic catalysis via dienolate-catalyst adducts is proposed, see: (a) Tiseni, P. S.; Peters, R. Angew. Chem., Int. Ed. 2007, 46, 5325. (b) Shen, L.-T.; Shao, P.-L.; Ye, S. Adv. Synth. Catal. 2011, 353, 1943. (c) Mo, J.; Chen, X.; Chi, Y. R. J. Am. Chem. Soc. 2012, 134, 8810. (d) Xiao, Z.; Yu, C.; Li, T.; Wang, X.-S.; Yao, C. Org. Lett. 2014, 16, 3632.

(11) (a) Seeman, J. I. Chem. Rev. **1983**, 83, 83. (b) Landis, C. R.; Halpern, J. J. Am. Chem. Soc. **1987**, 109, 1746. (c) Burés, J.; Armstrong, A.; Blackmond, D. G. J. Am. Chem. Soc. **2012**, 134, 6741.

(12) For discussions on the properties of NHCs, see: (a) Dröge, T.; Glorius, F. Angew. Chem., Int. Ed. **2010**, 49, 6940. (b) Maji, B.; Breugst, M.; Mayr, H. Angew. Chem., Int. Ed. **2011**, 50, 6915.

(13) For studies on the properties of α,β -unsaturated acyl azoliums, see: (a) Mahatthananchai, J.; Zheng, P.; Bode, J. W. Angew. Chem., Int. Ed. **2011**, 50, 1673. (b) Samanta, R. C.; Maji, B.; De Sarkar, S.; Bergander, K.; Fröhlich, R.; Mück-Lichtenfeld, C.; Mayr, H.; Studer, A. Angew. Chem., Int. Ed. **2012**, 51, 5234. For early examples of their formation and subsequent reactions, see: (c) Zeitler, K. Org. Lett. **2006**, 8, 637. (d) Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. **2007**, 9, 371. (e) Reference 6a. (f) Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P.; Bode, J. W. J. Am. Chem. Soc. **2010**, 132, 8810. (g) De Sarkar, S.; Studer, A. Angew. Chem., Int. Ed. **2010**, 49, 9266. (h) Sun, F.-G.; Sun, L.-H.; Ye, S. Adv. Synth. Catal. **2011**, 353, 3134.

(14) Relative and absolute stereochemistry assigned based on previous studies with **D4**, (a) Candish, L.; Forsyth, C. M.; Lupton, D. W. Angew. Chem., Int. Ed. **2013**, 52, 9149. Related (4+2) annulations, (b) Levens, A.; Candish, L.; Forsyth, C. M.; Lupton, D. W., unpublished.

(15) For selected studies on the role of the N-aryl group in triazolium-based NHC-catalysis, see: (a) Rovis, T. Chem. Lett. 2008, 37, 2. (b) Mahatthananchai, J.; Bode, J. W. Chem. Sci. 2012, 3, 192.
(c) Reference 14a.

(16) The role of salts in NHC organocatalysis has been documented previously by ourselves and others. For cooperative catalysis using Lewis acids and nucleophilic carbenes, see: Cohen, D. T.; Scheidt, K. A. *Chem. Sci.* **2012**, *3*, 53 and references therein.

(17) For selected NHC-catalysis terminating in β -lactonization, see: (a) Burstein, C.; Tschan, S.; Xie, X.; Glorius, F. Synthesis **2006**, 2418. (b) Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. **2006**, 128, 8736. (c) Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W. J. Am. Chem. Soc. **2007**, 129, 3520. (d) Wadamoto, M.; Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. **2007**, 129, 10098. (e) He, M.; Bode, J. W. J. Am. Chem. Soc. **2008**, 130, 418. (f) Kaeobamrung, J.; Bode, J. W. Org. Lett. **2009**, 11, 677. (g) Phillips, E. M.; Roberts, J. M.; Scheidt, K. A. Org. Lett. **2010**, 12, 2830. (h) Cohen, D. T.; Eichman, C. C.; Phillips, E. M.; Zarefsky, E. R.; Scheidt, K. A. Angew. Chem., Int. Ed. **2012**, 51, 7309.

(18) For recent synthetic and computational studies covering NHC β -lactonization, see: Johnston, R. C.; Cohen, D. T.; Eichman, C. C.; Scheidt, K. A.; Cheong, P. H. Y. *Chem. Sci.* **2014**, *5*, 1974. For computational observations from our group, see ref 9b.